水稲の側条・全量基肥施肥法

1.試験のねらい

水稲栽培のより一層の省力化と低コスト化を図るため、水稲の側条施肥に用いる全量基肥肥料の配合割合、減肥率を明らかにする。

2.試験方法

すべての原料を粉化しにくい粒状肥料とし、窒素成分率を高めた側条施肥用の全量基肥肥料を供試し、窒素肥料の速緩比率2種類及び施肥量2水準の計4処理について検討した。また、ひとふり全層施肥と慣行分施区を設けた。

- (1) 試験場所:栃木農試水田圃場 (厚層多腐植質多湿黒ボク土(猪倉統))
- (2)供試品種:コシヒカリ (3)試験規模:1区80㎡(生育・収量調査地点4カ所)
- (4) 栽培概要 (H13年度): 移植(5/9)、出穂期(7/24)、成熟期(9/9)
- (5) 処理内容:

処理区	施肥	肥料	の特徴	窒素施肥量 (kg/10a)						
,C-1_	方法	N成分(%)	N速緩比率				追肥	計	同左比	基肥
		,		速効性		LPSS100	塩安			現物量
側条全量A	側条	20	1:2	2.3	2.3	2.3		7.0	80	35
側条全量A減	側条	20	1:2	2.0	2.0	2.0		6.0	68	30
側条全量 B	側条	20	1:4	1.4	2.8	2.8		7.0	80	35
側条全量B減	側条	20	1:4	1.2	2.4	2.4		6.0	68	30
ひとふり	全層	12	1:2	2.3	2.3	2.3		7.0	80	58
無窒素										
慣行分施	全層			4.2			2.3+2.3	8.8	100	

(6) 供試肥料の成分: 側条全量 A (20-18-16)、側条全量 B (20-18-14)、ひとふり(12-20-22)

3 . 試験結果および考察

- (1) 側条全量 A 区は側条全量 B 区より各生育ステージにわたって茎数・穂数が多かった。乾物重も 出穂期までは明らかに重かったが、成熟期には差が縮小した。これに対し、草丈・稈長に有意な 差はなく、葉色は最高分げつ期までは側条全量 A 区が濃く、出穂期以降は側条全量 B 区が濃くな った(表-2) 側条全量 A 区では穂数が多く、側条全量 B 区では 1 穂籾数が多かった。その結 果、両者の総籾数は大差なくなり、収量もほぼ同等であった(表-3)
- (2) 減肥区(側条全量 A 減区)では、側条全量 A 区と比べ乾物重は生育初期で軽かったが、その他の生育は側条全量 A 区とほとんど同じような傾向を示し、収量はほぼ同程度であった。よって、慣行分施に比べて3割減が可能と考えられる(-表2、表-3)。側条全量 B 減区では側条全量 B 区に比べて、茎数は少なく推移し、乾物重も小さい傾向を示し、初期生育が遅れた(表-2)。側条全量 B 区および側条全量 B 減区では、配合した速効性肥料が少ないため、生育初期から茎数が少なく推移し、穂数も少なかった。平成13年度は、5月~7月の生育前半で平年より暑い年であり、地力窒素からの窒素の無機化も多かったと考えられる。もし、生育前半で平年の気温であれば、さらに茎数が少なく推移し、穂数も少なくなり、収量も減少することが考えられる。
- (3) ひとふり区では多収になったが、LSD検定(有意確率 5 %)の結果、側条全量 A 区とは有意差がなかった(表 3)。
- (4) 食味の評価指標である窒素含有率は、全量基肥区で1.26~1.32%であり、慣行分施区の1.53%に比べて小さかった(表 4)。施肥作業時間は10aあたり慣行分施で1.0時間であったが、側条全量で0.1時間と大幅に短縮できた。また、側条全量では施肥の3割減が可能であったことから、単位面積あたりの肥料の値段は、慣行分施区を100とすると側条全量の減肥区では74と低下した。

4.成果の要約

側条施肥用の全量基肥肥料として適した速緩比率は、適正な茎数や穂数が確保できることから、1:2であった。また、全層の全量基肥栽培に比べて減肥も可能で、全層施肥で慣行分施の2割減とすると、側条施肥で3割減が可能であった。側条・全量基肥施肥で省力化が可能になるだけではなく、減肥によって、コストの削減や環境保全的な農業ができる。

(担当者 土壌作物栄養研究室 森聖二)

表 - 1 試験土壌の化学性

pН	T-C	T-N	CEC	可給態N	Truog-P ₂ O ₅ _	交換性	塩基mg/	′100g
	%	%	meq/100g	mg/100g	mg/100g	CaO	MgO	K ₂ O
6.6	9.0	0.47	41.3	2.21	8.42	957.2	209.5	19.6

表 - 2 生育調査結果

					70.0	+-			1111	2	
処理区		草丈	cm		稈長 cm 積	徳長 cm		茎	数 本/r	n²	
	移植後	最高分	出穂前	出穂期			移植後	最高分	出穂前	出穂期	成熟期
	30日	げつ期	20日				30日	げつ期	20日		
	6/7	6/27	7/10	7/24	9/3	}	6/7	6/27	7/10	7/24	9/3
側条全量A	37	59	80	98	86	18	522	590	543	444	399
側条全量A減	37	59	80	99	86	18	534	608	533	433	386
側条全量 B	36	58	80	100	85	19	456	527	476	412	363
側条全量 B減	36	57	79	99	84	20	388	479	446	380	325
ひとふり	36	-	81	98	87	18	514	651	580	492	416
無窒素	31	53	71	86	76	18	343	406	359	308	256
慣行分施	36		77	97	85	19	475	605	527	443	350
	葉色 SPAD							加重 kg/	10a		
	移植後 30日	最高分げつ期	出穂前 20日	出穂期	成熟期		移植後 30日	最高分 げつ期	出穂前 20日	出穂期	成熟期
側条全量 A	44.4	41.0	35.7	38.3	31.9		77	308	578	978	1293
側条全量A減	44.4	40.8	34.2	38.1	30.9		73	257	520	1092	1268
側条全量 B	44.0	39.8	35.2	39.7	33.5		72	265	513	841	1271
側条全量 B減	44.0	40.1	36.2	40.5	33.0		66	259	414	771	1209
ひとふり	43.9	42.1	35.2	38.2	31.4		64	311	589	1006	1391
無窒素	41.3	36.8	30.8	35.1	24.9		33	145	311	622	825
慣行分施	44.8	39.8	31.3	38.8	32.5		61	311	512	865	1251

表 - 3 収量および収量構成要素、倒伏程度

処理区	総籾重	籾藁比	精玄米重 *	同左比	一穂	総籾数	千粒重	登熟	倒伏程度
	kg/10a	籾/藁	kg/10a		籾数	100粒/m²	g	歩合	0 ~ 5
			水分14.5%				水分14.5%	%	
側条全量A	649	0.98	610 ac	106	76.4	304	22.2	90.7	0.5
側条全量 A減	629	0.98	592 a	103	76.8	296	21.6	92.5	0.5
側条全量 B	641	1.00	603 a	105	81.6	295	21.9	93.2	0.5
側条全量B減	617	1.03	586 a	102	87.1	282	22.5	92.3	0.5
ひとふり	693	0.94	655 c	114	77.6	323	22.0	92.2	0.2
無窒素	398	0.94	368 b	64	71.6	183	21.8	92.5	0.0
	608	0.93	574 a	100	78.0	272	22.8	92.7	0.5

^{*:}アルファベットはLSD検定、有意確率5%で異符号間に有意差あり

表 - 4 玄米窒素含有率とコスト試算

処理区	玄米窒素	施肥作業時間	肥料の値段
	含有率%	時間/10a	慣行分施:100
側条全量A	1.26	0.1	86
側条全量A減	1.26	0.1	74
側条全量 B	1.28	0.1	*
側条全量 B減	1.32	0.1	*
ひとふり	1.25	0.4	116
<u>慣行分施</u>	1.53	1.0	100

^{* :}側条全量 B は試作品であり、市販されておらず、肥料の値段を計算できない。