転換畑の麦跡大豆晚播栽培における
畳土条件及び栽培様式に関する研究

前波健二郎・大田 章・久保野実*・小林俊一

Ⅰ 緒 言

水田利用再編対策は国の重要な施策として展開され、転作作物として麦、大豆等の生産が奨励されているが、これが定着のためには稲作に劣らぬ収益の確保が必要であるため、麦－大豆の輪作体系が普及に移されている。

転換畑の麦跡大豆晚播栽培では麦収穫後の麦稈を畳込みによる畳土条件が大きな問題となっている。畳土条件と大豆の発芽及び初生生育については西児ら5)、茨城農試6)等の報告があるが、麦稈稈込み等についての検討はなされていない。

栽培様式については畑での知見は得られていているが、転換畑の麦跡晚播栽培における報告は少ない。

そこで、筆者らは転換畑における晚播大豆の生産安定をかるため、畳土条件及び栽培様式に関する試験を実施し、いくつかの知見を得たので報告する。

本試験は農水省から総合助成試験費を受け、『畳土型別転換畑における排水技術と大豆の多収技術の確立試験』の課題名で1979年から1981年の3か年にわたり実施したうちの一部をとりまとめたものである。

Ⅱ 畳土条件と発芽初期生育に関する試験

転換畑における麦跡晚播大豆の発芽初期生育を高める畳土条件について麦稈稈込みの有無及び耕深との関連を組合せて検討した。

1. 試験方法

1）稲跡の転換初年度は場における畳土について

供試場は栃木農試本場内水田は場で土壌処

群は、厚層多腐植質多湿黒ボク土及び中層粘灰
色低地土、灰褐系である。両土壌とも土稈作付

跡の場である。灰色低地土は前年秋に1回

ロータリ耕うんを行った。試験はロータリ耕う

ん回数1～4回の4段階で行った。耕うんピッチ

は各10cmである。試験は1980年に実施した。

2）麦跡の転換初年度は場及び2年目は場

における畳土について

供試品種はタチスズナリである。供試場は

栃木農試場本場内水田は場で土壌処群は中層粘灰
色低地土、灰褐系である。土稈－麦作付跡及び

その後大豆－麦作付跡は場である。栽培密度は

㎡16.7株（畦幅60cm、株間10cm、1本立）

である。施用はa当たり窒素0.2kg、リン酸0.7

kg、カリ0.7kgを全面施用した。試験区の構成

は、耕深8～9cm及び12～13cmの2段階、麦稈
稈込みの有無及びロータリ耕うん回数（1979
年は2回及び3回、1980年は1～3回）で行った。

は種を、1979年は6月21日、1980年は6月

18日に手まきで行った。1区面積は16㎡として

2段階で実施した。麦稈は1979年はa当たり48

kg、1980年は50kgをすき込んだ。

3）麦稈稈込み量について

供試品種はタチスズナリである。供試場は

栃木農試場本場内水田は場で土壌処群は厚層多腐
植質多湿黒ボク土であり、転換3年目（麦跡）

は場である。試験区の構成は、耕うん回数1、

2、3回の3段階。麦稈量0、a当たり20kg、

40kg、60kgの4段階及び麦稈の平均切断長9.3

cm及び16.6cmの2段階で行った。耕うんピッチ

は各10cmで行った。は種はトラクタけん引型は

※現在、小山農業改良普及所
栃木県農業試験場研究報告第28号

種機（真空式，は種溝切ディスク型）で1981年6月30日に行った。
2. 試験結果
1）稲跡の転換初年目は場における碎土について

土壌の分布は第1表のとおりである。厚層多腐植腐質多湿黑ボク土では、耕うん回数を増やすにしたがい直径4cm以上の土壌割合が減少したが、耕うん回数4回でも碎土率（直径2cm以下の土壌割合）は59.1%であった。中粗粒灰色低地土、灰褐系では、前年に行った耕うんを含めて、耕うん回数3回で54.4%，4回で74.4%であった。

第1表 土壌の分布（1980）

<table>
<thead>
<tr>
<th>土壌群</th>
<th>耕うん回数</th>
<th>土壌の分布 %</th>
<th>1cm以下</th>
<th>1～2cm</th>
<th>2cm以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>厚層多腐植腐質多湿黑ボク土</td>
<td>1</td>
<td>10.8</td>
<td>12.1</td>
<td>22.9</td>
<td>77.1</td>
</tr>
<tr>
<td>2</td>
<td>17.8</td>
<td>25.3</td>
<td>43.1</td>
<td>56.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>23.8</td>
<td>31.5</td>
<td>55.3</td>
<td>44.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>27.5</td>
<td>31.6</td>
<td>59.1</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td>中粗粒灰色低地土</td>
<td>2</td>
<td>17.7</td>
<td>14.3</td>
<td>32.0</td>
<td>68.0</td>
</tr>
<tr>
<td>3</td>
<td>33.8</td>
<td>20.6</td>
<td>54.4</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>46.2</td>
<td>28.2</td>
<td>74.4</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68.6</td>
<td>26.3</td>
<td>94.9</td>
<td>5.1</td>
<td></td>
</tr>
</tbody>
</table>

注1. 中粗粒灰色低地土、灰褐系の耕うん回数は秋耕を含む。
2. 塩土の分布は土壌重量比。

第2表 土壌の分布（1979）

<table>
<thead>
<tr>
<th>耕深</th>
<th>耕うん</th>
<th>土壌の分布 %</th>
<th>1cm以下</th>
<th>1～2cm</th>
<th>2cm以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>無</td>
<td>2</td>
<td>56.2</td>
<td>23.8</td>
<td>80.0</td>
<td>20.0</td>
</tr>
<tr>
<td>浅</td>
<td>3</td>
<td>54.4</td>
<td>25.4</td>
<td>79.8</td>
<td>20.2</td>
</tr>
<tr>
<td>深</td>
<td>3</td>
<td>67.1</td>
<td>19.8</td>
<td>86.9</td>
<td>13.1</td>
</tr>
</tbody>
</table>

注：耕深：浅8～9cm 深12～13cm

2）麦跡の転換初年目は場及び2年目は場における碎土について

初年目麦跡は場における土壌の分布は第2表のとおりである。麦穂をすき込んでいるは場では耕うん回数2回で碎土率は80.0%であった。また、耕深が深くと碎土率はわずかに減少した。

転換2年目麦跡は場での土壌の分布及び大豆の生育は第3表のとおりである。耕うん回数を増やすと碎土率は増加した。また、麦穂をすき込まない場合、耕うん回数1回で碎土率67.4%であった。耕深が深く麦穂をすき込んだ場合、耕うん回数1回で碎土率が特に低下した。発芽率は90.5～98.5%と良好であり、区間に明らかに差はなかった。6月30日調査では、耕うん回

第3表 土壌の分布及び生育収量（1980）

<table>
<thead>
<tr>
<th>耕深</th>
<th>耕うん</th>
<th>土壌率</th>
<th>発芽率</th>
<th>6月30日</th>
<th>7月22日</th>
</tr>
</thead>
<tbody>
<tr>
<td>無</td>
<td>1</td>
<td>67.4</td>
<td>94.0</td>
<td>3.15</td>
<td>3.57</td>
</tr>
<tr>
<td>浅</td>
<td>2</td>
<td>89.0</td>
<td>90.5</td>
<td>0.42</td>
<td>3.57</td>
</tr>
<tr>
<td>深</td>
<td>3</td>
<td>57.8</td>
<td>94.0</td>
<td>0.43</td>
<td>3.51</td>
</tr>
</tbody>
</table>

注：子実重 kg/a
転換畑の麦跡大豆耕栽培における碎土条件及び栽植模様に関する研究

数1回で乾物重がやや軽い傾向が認められた。また、T / R比は耕うん回数が増すにしたがい減少した。しかし、7月22日調査では乾物重、T / R比とも区間差は認められなかった。子実重も区間差は認められなかった。

3） 麦穂すき込み量について

碎土率及び大豆の生育は第4表のとおりである。碎土率は全般に高かったが、耕うん回数1回で切断長が長く、麦穂すき込み量60kg区で53.8%と低かった。麦穂の埋没率は処理間に明らかに差は認められなかった。1m間の発芽数は碎土率53.8%の区で8.5本と低かった他は、処理間に差は認められなかった。7月31日の草丈は処理間に明らかな差はなかった。

第4表 碎土率及び大豆の生育（1981）

<table>
<thead>
<tr>
<th>耕うん回数</th>
<th>麦穂率</th>
<th>麦穂すき込み量</th>
<th>1m間発芽数</th>
<th>7月31日の草丈</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/a</td>
<td>%</td>
<td>本</td>
<td>cm</td>
</tr>
<tr>
<td>0</td>
<td>83.2</td>
<td>-</td>
<td>12.0</td>
<td>58.0</td>
</tr>
<tr>
<td>20</td>
<td>74.6</td>
<td>72.1</td>
<td>11.7</td>
<td>58.6</td>
</tr>
<tr>
<td>短</td>
<td>40</td>
<td>79.0</td>
<td>11.9</td>
<td>58.1</td>
</tr>
<tr>
<td>60</td>
<td>76.5</td>
<td>80.2</td>
<td>12.1</td>
<td>55.4</td>
</tr>
<tr>
<td>長</td>
<td>40</td>
<td>73.1</td>
<td>11.6</td>
<td>56.1</td>
</tr>
<tr>
<td>60</td>
<td>53.8</td>
<td>76.8</td>
<td>8.5</td>
<td>52.1</td>
</tr>
<tr>
<td>20</td>
<td>82.5</td>
<td>88.5</td>
<td>11.4</td>
<td>58.2</td>
</tr>
<tr>
<td>短</td>
<td>40</td>
<td>94.1</td>
<td>13.0</td>
<td>56.4</td>
</tr>
<tr>
<td>60</td>
<td>83.4</td>
<td>83.8</td>
<td>11.8</td>
<td>54.6</td>
</tr>
<tr>
<td>長</td>
<td>40</td>
<td>78.8</td>
<td>12.3</td>
<td>55.9</td>
</tr>
<tr>
<td>60</td>
<td>79.4</td>
<td>78.5</td>
<td>11.0</td>
<td>53.8</td>
</tr>
<tr>
<td>0</td>
<td>82.3</td>
<td>-</td>
<td>12.0</td>
<td>55.9</td>
</tr>
<tr>
<td>20</td>
<td>81.8</td>
<td>87.2</td>
<td>11.9</td>
<td>52.2</td>
</tr>
<tr>
<td>短</td>
<td>40</td>
<td>80.0</td>
<td>11.7</td>
<td>50.9</td>
</tr>
<tr>
<td>60</td>
<td>81.7</td>
<td>81.8</td>
<td>11.5</td>
<td>55.0</td>
</tr>
<tr>
<td>長</td>
<td>40</td>
<td>80.0</td>
<td>11.5</td>
<td>57.7</td>
</tr>
<tr>
<td>60</td>
<td>81.5</td>
<td>88.9</td>
<td>12.7</td>
<td>51.8</td>
</tr>
</tbody>
</table>

注：1m間の発芽数（理論値）は11.8粒。

3. 考察

西入らは碎土率57.5〜83.7%の範囲では、土壌分布と地上部生育、根系分布及び収量との間に明瞭な関係は認められなかったと報告しているが、本試験でも手取りでは碎土率が57.8〜93.1%の範囲で発芽数及び生育収量に差は認められなかった。

機械は種の場合、茨城県試験18では碎土率60%以上で出芽が良好であったと報告している。本試験でも碎土率53.8%の場合、1m間発芽本数が低下したが、73.1%以上では出芽は良好であり、碎土率は60%程度必要と推察された。

60%程度の碎土率を確保するためには、対象区として実施した転換初年度水稲試験の場合は本試験の結果4回の耕うんが必要であったが、麦跡では作土が耕斬化になっているため、本試験の結果から、麦穂の有無を問わず通常1回の耕うんでよい成績が得られた。ただし、転換初年度目と耕深を12〜13cm程度に深くした場合及び麦穂重がa当たり60kgで切断長が長い場合は碎土率が低下するので2回の耕うんが必要と考えられる。

III 栽植様式に関する試験

転換畑における麦跡栽培大豆の収量向上をはかるため栽植密度及び栽植様式について検討した。

1. 試験方法

供試品種はタチズナキである。供試は場は栃木農試本場内水田は場で土壌地群中中粒株灰色低地、灰褐色系である。1978年秋から二稲大麦・大豆の体系で3年間作付した。施肥は、a当たり窒素0.2kg、リン酸0.7kg、カリ0.7kgとした。試験区の構成は第5表のとおりである。1区面積は16㎡で1区試験とした。は種は、1979年6月21日、1980年6月18日、1981年6月24日に行った。1株2粒は播種して、間引後1株1本立とした。
栃木県農業試験場研究報告第28号

2. 試験結果

1）気象概況

1979年は、全般に高圧に経過した。日照はほぼ平年並であった。降水量は少なめに経過したが9月下旬は台風等により長雨があった。

1980年は6月下旬から8月下旬にかけて低温多雨・か照に経過した。

1981年は7月は比較的高温に経過したが、登熟期間は平年並かやや低めに経過した。

第5表 試験区の構成

<table>
<thead>
<tr>
<th>細幅(cm)</th>
<th>株間(cm)</th>
<th>20</th>
<th>13.4</th>
<th>10</th>
<th>7.5</th>
<th>6.7</th>
<th>5</th>
<th>3.3</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>5.6*</td>
<td>8.3*</td>
<td>-</td>
<td>-</td>
<td>16.7*</td>
<td>-</td>
<td>33.3*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>8.3*</td>
<td>-</td>
<td>16.7</td>
<td>22.2</td>
<td>-</td>
<td>33.3</td>
<td>-</td>
<td>66.7*</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>16.7*</td>
<td>33.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>66.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

第6表 地上部乾物重及び葉面積指数の推移（1980年）

<table>
<thead>
<tr>
<th>細幅長さ(cm)</th>
<th>株間長さ(cm)</th>
<th>栽種密度</th>
<th>7月22日</th>
<th>8月5日</th>
<th>8月27日</th>
<th>9月10日</th>
<th>地上部乾物重</th>
<th>葉面積指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 × 20</td>
<td>5.6</td>
<td>19</td>
<td>71</td>
<td>222</td>
<td>368</td>
<td>1.23</td>
<td>2.70</td>
<td>2.50</td>
</tr>
<tr>
<td>90 × 6.7</td>
<td>16.7</td>
<td>46</td>
<td>157</td>
<td>277</td>
<td>498</td>
<td>2.49</td>
<td>3.43</td>
<td>3.89</td>
</tr>
<tr>
<td>60 × 10</td>
<td>16.7</td>
<td>51</td>
<td>117</td>
<td>355</td>
<td>482</td>
<td>2.23</td>
<td>4.38</td>
<td>3.66</td>
</tr>
<tr>
<td>30 × 20</td>
<td>16.7</td>
<td>60</td>
<td>143</td>
<td>397</td>
<td>562</td>
<td>2.41</td>
<td>4.89</td>
<td>4.21</td>
</tr>
<tr>
<td>30 × 5</td>
<td>66.7</td>
<td>158</td>
<td>260</td>
<td>440</td>
<td>760</td>
<td>4.63</td>
<td>5.43</td>
<td>6.17</td>
</tr>
</tbody>
</table>

第7表 成熟期調査

<table>
<thead>
<tr>
<th>細幅長さ(cm)</th>
<th>株間長さ(cm)</th>
<th>栽種密度</th>
<th>主茎長さ</th>
<th>葉の太さ</th>
<th>太葉数</th>
<th>葉面積指数</th>
<th>結実数</th>
<th>統実数</th>
<th>統実重</th>
<th>秸本数</th>
<th>秸本重</th>
<th>比較率</th>
<th>百粒重</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 × 20</td>
<td>5.6</td>
<td>58</td>
<td>9.6</td>
<td>14.1</td>
<td>5.7</td>
<td>440</td>
<td>1.86</td>
<td>17.7</td>
<td>85</td>
<td>23.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 × 13.4</td>
<td>8.3</td>
<td>57</td>
<td>8.5</td>
<td>13.9</td>
<td>4.8</td>
<td>721</td>
<td>1.85</td>
<td>20.3</td>
<td>98</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 × 6.7</td>
<td>16.7</td>
<td>78</td>
<td>7.3</td>
<td>13.7</td>
<td>3.8</td>
<td>627</td>
<td>1.73</td>
<td>19.8</td>
<td>95</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 × 3.3</td>
<td>33.3</td>
<td>93</td>
<td>5.2</td>
<td>12.7</td>
<td>3.1</td>
<td>748</td>
<td>1.75</td>
<td>19.1</td>
<td>92</td>
<td>22.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 × 20</td>
<td>8.3</td>
<td>64</td>
<td>8.5</td>
<td>14.1</td>
<td>5.2</td>
<td>548</td>
<td>1.79</td>
<td>19.5</td>
<td>94</td>
<td>23.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 × 10</td>
<td>16.7</td>
<td>79</td>
<td>7.6</td>
<td>13.8</td>
<td>3.9</td>
<td>646</td>
<td>1.76</td>
<td>20.8</td>
<td>100</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 × 7.5</td>
<td>22.2</td>
<td>79</td>
<td>6.8</td>
<td>13.3</td>
<td>3.4</td>
<td>728</td>
<td>1.72</td>
<td>20.6</td>
<td>99</td>
<td>23.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 × 5</td>
<td>33.3</td>
<td>95</td>
<td>6.2</td>
<td>13.4</td>
<td>2.8</td>
<td>764</td>
<td>1.75</td>
<td>20.4</td>
<td>98</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 × 2.5</td>
<td>66.7</td>
<td>100</td>
<td>5.0</td>
<td>12.9</td>
<td>2.4</td>
<td>884</td>
<td>1.75</td>
<td>18.4</td>
<td>88</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 × 20</td>
<td>16.7</td>
<td>70</td>
<td>7.5</td>
<td>14.1</td>
<td>4.1</td>
<td>701</td>
<td>1.75</td>
<td>21.8</td>
<td>105</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 × 10</td>
<td>33.3</td>
<td>91</td>
<td>6.2</td>
<td>13.6</td>
<td>3.6</td>
<td>791</td>
<td>1.75</td>
<td>21.8</td>
<td>105</td>
<td>23.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 × 5</td>
<td>66.7</td>
<td>107</td>
<td>4.3</td>
<td>12.6</td>
<td>1.3</td>
<td>723</td>
<td>1.64</td>
<td>19.2</td>
<td>92</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注. 1980年と1981年の2ヶ年の平均値。
転換稲の麦跡大豆晩播栽培におけるまた東方条件及び栽培様式に関する研究

8月27日の葉面積指数と乾物重との間に相関が認められた（第1図）。

3）成熟期における主要形質及び収量について

成熟期調査の結果は第7表のとおりである。

小葉長は、栽培密度が増すにしたがい長くなった。また、同じ栽培密度間では毎幅の狭い方がやや短かった。

茎の太さは、栽培密度が増すにしたがい細くなった。また、畦幅90cmで16.7株/㎡以上の区は畦幅60cm及び30cmより細くなった。

倒伏程度は、栽培密度が増すにしたがい増加した（第2図）。畦幅による差は明らかでなかった。また、茎の太さ/主茎長と倒伏程度との関係は第3図のとおりであり高い相関が認められた。

次に主要形質についてみると、栽培密度を増すことにより、個体当たりの主茎節数、一次分枝数は減少しているが、㎡当たり穂実数は増加し収量構成に有利に作用しているが、一英粒数、百粒重が減少傾向があるため密植の効果は相殺され、子実重は、全体では16.7～33.3株/㎡（畦幅30cm、株間10～20cm）がやや多収であった。また、畦幅90cmでは8.3株が、畦幅60cm及び30cmでは16.7～33.3株がやや多収であった。

同一栽培密度での畦幅による差異は、主茎節数、植数は減少しているが、㎡当たり穂実数は増加し収量構成に有利に作用しているが、一英粒数、百粒重が減少傾向があるため密植の効果は相殺され、子実重は、全体では16.7～33.3株/㎡（畦幅30cm、株間10～20cm）がやや多収であった。また、畦幅90cmでは8.3株が、畦幅60cm及び30cmでは16.7～33.3株がやや多収であった。

第2図　栽培密度と倒伏程度（1980、1981）
注　倒伏程度　0：無、1：微、2：少、3：中、4：多、5：甚

第3図　健全指数と倒伏程度（1980、1981）
注　健全指数 = 茎の太さ/主茎長 × 100

第8表　開花数、結実数及び結実率（1981）

<table>
<thead>
<tr>
<th>畦幅×株間</th>
<th>栽培密度</th>
<th>開花数</th>
<th>結実数</th>
<th>結実率</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm × cm</td>
<td>株/㎡</td>
<td>㎡/株</td>
<td>㎡/㎡</td>
<td>割合%</td>
</tr>
<tr>
<td>60 × 20</td>
<td>8.3</td>
<td>130.9</td>
<td>1.086</td>
<td>21</td>
</tr>
<tr>
<td>60 × 10</td>
<td>16.7</td>
<td>78.3</td>
<td>1.268</td>
<td>35</td>
</tr>
<tr>
<td>60 × 5</td>
<td>33.3</td>
<td>50.2</td>
<td>1.571</td>
<td>55</td>
</tr>
<tr>
<td>30 × 5</td>
<td>66.7</td>
<td>42.1</td>
<td>2.442</td>
<td>59</td>
</tr>
</tbody>
</table>

- 37 -
\[n \] 当たり稔実数数、百粒重、子実重は稈幅の狭い方がやや多く、一次分枝数は\[n \] 当たり16.7株以下では稈幅の狭い方が多かったが、33.3株以上では稈幅の広い方が多い傾向だった。

4）開花数及び絶収数について

開花数及び絶収数は第8表のとおりである。開花数は、株当たりでは栽培密度が増加したが、\[n \] 当たりでは増加した。開花数は栽培密度が増加した主茎の割合が高くなった。なお、開花数は開花期の地上部乾物重と相関が認められた（第4図）。

絶収数は、栽培密度が増加したが減少した。減少する割合は、分枝よりも主茎で顕著であった。絶収数は開花期から3週間の乾物増加量と相関が認められた。また、倒伏との相関も認められた（第5〜6図）。

株当たり絶収数は、栽培密度が増加したが減少した。減少割合は開花数より大きかった。\[n \] 当たり絶収数は33.3株 / \[n \] でやや多く他は、栽培密度による差はなかった。絶収数は、全区とも主茎より分枝で多かった。\[n \] 当たり33.3株までは栽培密度が増加した主茎の割合が増加したが、66.7株では主茎の割合が減少した。

収量構成要素の年次間変動は第9表のとおりである。開花数、絶収数、稔実数は年次による差が比較的大きいが、一穂粒数及び百粒重は小さかった。

第4図 地上部乾物重と開花数（1981）
注：地上部乾物重は8月12日調査

第5図 乾物増加量と絶収数（1980、1981）
注：乾物増加量は、1980年8月5日〜27日（22日間）、1981年8月2日〜9月4日（23日間）

第6図 倒伏程度と絶収数（1980、1981）

3. 考察

大庭らは、個体当たり開花数及び絶収数が栽培密度を増加すると減少し、特に分枝で顕著であったと報告している。本試験でも開花数は主茎では栽培密度を増加してもほとんど減少しなかったが、分枝では特に下位分枝で減少した。また、田尻らは主茎の生体重と相関があるとしたが、本試験でもほぼ同様な結果が得られた。

絶収数は、株当たりの開花期から3週間の乾物増加量及び倒伏程度と相関が認められた。また、大庭らは開花後30日間の日照時間と相関があるとしたが、本試験でも同様な傾向が認められたことから、絶収数は開花後20〜30日間の個体の生育増加量及び受光条件が関係していると考えられる。

絶収数は、主茎では栽培密度が増加すると全般に減少したが、分枝では主茎の6節以下及び9節以上につく分枝で顕著な減少が認められた。\[n \]
転換畑の麦類大豆薬剤栽培における砂土条件及び栽培様式に関する研究

第9表 収量構成要素の年次間変動

<table>
<thead>
<tr>
<th>年次</th>
<th>開花期から30日間の日照時間</th>
<th>開花数</th>
<th>結実率</th>
<th>植実数</th>
<th>一平方数</th>
<th>百粒重</th>
<th>子実重</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>173 h</td>
<td>1,756</td>
<td>47</td>
<td>820</td>
<td>1.81</td>
<td>24.3</td>
<td>29.3</td>
</tr>
<tr>
<td>1980</td>
<td>103 h</td>
<td>1,398</td>
<td>43</td>
<td>608</td>
<td>1.76</td>
<td>23.2</td>
<td>19.0</td>
</tr>
<tr>
<td>1981</td>
<td>147 h</td>
<td>1,268</td>
<td>48</td>
<td>627</td>
<td>1.83</td>
<td>23.2</td>
<td>22.6</td>
</tr>
</tbody>
</table>

注：株幅60cm×株間10cm（16.7株/m²）の数。

当たりでは33.3株/m²まではわずかに増加したがさらに栽培密度を増すと倒伏等のため結実数が減少したと考えられる。

畑における栽培密度について増らは6月10～20日は種でm²当たり30株、川島らは7月上旬までの種で20～25株が適正とした。

転換畑では栽培がおおむね順に傾向がある（第10表）、収量は多い、結実が比較的高く、畑は同様な結果であった。8.3株程度の栽培ではm²当たり開花数が不足のため、結実数は高まるが、m²当たり数が少なくやや低収になったと考えられる。

「健全指数」（茎の大きさ/主茎長）と倒伏は相関が高いと報告されており、本試験でも倒伏程度は栽培密度及び「健全指数」と相関が認められた。したがって、m²当たり66.7株程度の密植では個体の形態が劣化し早期に倒伏するため結実数が減少しやや低収となったと考えられる。

栽培様式については、同一密度の場合は、遠井らは播種30～60cmの範囲では影響は少ないと報告している。川島らはm²当たり15～30株の範囲で50cm幅が25cm播種より適当であったとし、増らは45cm播種が60cm播種に比較して適当傾向だったとしている。本試験では、播種の狭い方がわずかに多収の傾向であった。播種の狭い方が乾物重やや重く、そのため開花数がやや多くなり、結実数が増加したためと推察される。

90cm播種では株間13.4cm（m²当たり8.3株）で、60cm播種では株間10～5cm（同16.7～33.3株）で、30cm播種では株間20～10cm（同16.7～33.3株）でやや多収の傾向であり、播種が広い場合は栽培密度が低い段階でやや多収であった。これは播種による影響が大きいと考えられるが本試験では明らかにできなかったので今後検討を要する。

V 摘 要
転換畑における麦類大豆薬剤栽培の安定栽培法を確立するため砂土条件及び栽培様式に関する試験を実施した。

1. 穴播種（直径2cm以下の土塊割合）が約60%以上あると発芽及び生育栄養は良好であった。

2. 穴播種60%を確保するのに必要なロータリ回数は、稲作転換初年度は播種では4回であった。また、麦作は播種では通常1回であったが、転換初年度、耕深を深くした場合及び播種面積が多く播種の切断長が長い場合は2回であった。

3. 栽培密度が増加したが単位面積当たりの開花数は増加したが、結実数は同程度がわずかに増加した程度であった。

4. 最も子実生の高かった栽培密度は、16.7～33.3株/m²（播種30cm、株間10～20cm）であった。

5. 同じ栽培密度間では、播種が狭いほど

Studies on Harrowing Conditions and Planting Patterns in
Late-Seeding Soybean Plant on Rotational Upland Fields

Kenjiro Maenami, Akira Ota, Minoru Kubono and Shunichi Kobayashi

Summary

In order to establish the method of stable cultivation in late-seeding soybean plant on rotational upland fields, harrowing conditions and planting patterns were examined.

1. Emergence and growth of soybean plant were favorable in such fields that the percentage of soil clods below 2cm in diameter was higher than 60%.

2. In order to obtain the harrowing condition mentioned above, four times of rotary tilling were necessary on the primary upland fields after rice cropping. On the contrary, such a harrowing condition was achieved by only one time of tilling on rotational upland fields after barley cropping, though two times of tilling were necessary when deep tillage was required or a large quantity of long barley straws was applied.

3. The number of flowers increased with the increase of planting density, but the number of pods did not change.

4. Planting density to obtain the highest grain yield was 16.7~33.3 hills per square meter (30cm row width and 10~20cm intrarow spacing).

5. If the planting density was constant, the length of main stems became shorter and the grain yield increased a little as the row width became narrower.