水稲の生育量に応じた一発穂肥の施用量

1. 試験のねらい

水稲良質米の収量・品質安定化および追肥作業の省力化のための一発穂肥を開発し、普及しているが、その施用適量について水稲の生育量との関連で明らかにし、良質米の生産安定に寄与する。

2. 試験方法

試験は平成5、6年の2ヶ年にわたって早植のコシヒカリを対象に実施した。5月9~10日に稚苗を農試本場内(厚層多腐植質多湿黒ボク土)に移植した。試験条件はまず基肥窒素を1、3、5 kg/10 aの3段階として水稲の生育量を変え、追肥時期と追肥量を組み合わせて処理した。追肥は緩効性肥料を含む一発穂肥(20-0-20)を用い、施用時期は出穂前23、18、10日の3段階とし、施用量は窒素合計成分で2、3、4 kg/10 aの3段階とした。各基肥窒素レベルに追肥なし区を設けた他、基肥窒素3 kg 区に従来のN K 化成を2回(出穂前18日+穂揃い期)、各窒素成分2 kg を施用する比較区を設けた。

調査は生育経過、収量、収量構成要素、倒伏程度、品質、窒素濃度および窒素吸収量について行った。

3. 試験結果及び考察

- (1) 平成 5 年は 8 月上旬の著しい低温により $10\sim15$ %程度不稔が発生し、収量が $370\sim522$ kg /10 a と低く、平成 6 年は好天により $542\sim639$ kg/10 a と多収であったが倒伏はやや多かった。また、平成 6 年は乳白米の発生がやや多く、品質が低下した。
- (2) 基肥窒素 1 kg の場合、出穂前23日施用では登熟後半に窒素切れし、穂の窒素吸収量は少なかった。出穂前 18 日の場合は 4 kg 施用によって総籾数が増加し、収量も向上したが 3 kgでは不十分であった。出穂前 10 日施用では 4 kg 施用でも収量は低かった。
- (3) 基肥窒素 5 kg の場合は、無追肥でも倒伏が著しく、出穂前 10 日前に 3 kg 施用した方が倒伏 は若干軽減し収量も高くなった。
- (4) 基肥窒素 3 kg の場合、出穂前23日施用では窒素吸収量はやや少なかったが、収量は高くなった。しかし倒伏がやや増加し品質が低下した。出穂前 18 日では 4 kg 施用で総籾数が増加し多収になった。品質は 3 kg 施用の方が良かった。窒素吸収量、特に穂への吸収量は施用量に従って増加した。いずれの施用時期でも窒素施用量は 3 kg 以上で籾数の増加が認められた。出穂前10日では処理量間の差がなかった。
- (5) 以上の結果から、葉色×茎数値が出穂前30日で1,900以下、出穂前18日で1,500以下の生育量が少ない場合、一発穂肥の施用量は出穂前23日で5~6kg、または出穂前18日で4~5kgが適当と判断される。葉色×茎数値が出穂前30日で2,300程度、出穂前18日で1,700程度の中庸な生育の場合、出穂前18日に3~4kg、また葉色×茎数値がそれぞれ2,800以上、2,300以上の生育量が大きすぎる場合、出穂前10日以降に2~3kgが適当と考えられる。

4. 成果の要約

早植コシヒカリに対する一発穂肥の施用量は、生育量が小さい場合には出穂前23日で $5\sim6~kg$ または出穂前18日で $4\sim5~kg$ 、生育量が中庸な場合には出穂前18日に $3\sim4~kg$ 、生育量が過剰な場合には出穂前10日以降に $2\sim3~kg$ が適当と判断された。

(担当者 作物部 山口正篤・福島敏和 土壌肥料部 手塚俊介)

表-1 追肥時期、追肥量と収量、品質、窒素吸収量(2ヶ年平均)

	基肥	追肥時期	葉色×茎数値		稈長	総籾数	玄米重				窒素吸収量g/m²		
	窒素 (出穂前)		(出穂前日数)			*100		比率	倒伏	品質	成熟期		
	kg/10a	追肥量	-30 日	-18日	Cm	∕ m²	kg/10a	%			計	蘷	穂
	1	ナシ	1, 742	1, 548	85	259	456	80	0.7	2. 0	9. 34	3. 55	5. 79
	1	-23, 4	1, 865	2.013	89	299	532	94	1.6	2. 3	10.97	4. 15	6. 83
	1	-23. 3	1, 786	1, 886	87	290	521	92	1.0	2. 0	10.90	4. 20	6. 70
	1	-18, 4	1.828	1, 447	89	300	551	98	1.1	3. 0	11.40	4. 28	7.12
	1	-18, 3	1,886	1, 388	88	283	519	92	1. 2	2. 3	11.57	4. 35	7. 21
	1	-10.4	1, 820	1, 443	88	293	518	92	0.9	2. 8	11. 62	4. 60	7. 02
	3	ナシ	2. 368	1, 691	89	296	525	93	1.4	2. 5	10. 42	4. 06	6. 36
	3	2+2	2. 361	1, 762	90	317	563	100	2. 3	2. 5	13. 29	5. 29	8. 00
	3	-23. 4	2, 412	2. 202	94	329	560	99	2. 9	3. 8	12. 28	4. 71	7. 57
	3	-23, 3	2, 374	2. 319	93	333	566	100	3. 0	3. 8	12. 37	4. 84	7. 53
	3	-23, 2	2, 370	2, 169	93	316	530	94	2. 4	3. 8	11. 56	4. 38	7. 17
	3	-18, 4	2, 339	1. 720	92	334	564	101	2. 4	3. 8	12. 78	4. 58	8. 21
	3	-18, 3	2, 220	1. 677	93	318	549	98	2. 2	3. 3	12. 28	4. 56	7. 72
	3	-18. 2	2, 182	1, 572	91	312	559	99	1. 8	2. 5	12. 08	4. 43	7. 66
	3	-10.4	2, 314	1. 587	92	306	541	96	1. 9	3. 5	11.80	4. 56	7. 25
	3	-10, 3	2, 336	1, 751	92	306	538	96	1.8	2. 8	12. 08	4. 71	7. 37
	3	-10, 2	2, 267	1, 757	92	308	548	98	1.8	3. 0	11.97	4. 35	7. 62
	5	ナシ	2, 961	2, 471	94	316	510	91	4. 3	2. 8	11. 55	4. 69	6. 87
	5	-23, 4	3, 105	2, 596	95	344	550	97	4. 3	3. 5	13. 03	5. 20	7. 84
	5	-18, 4	2, 848	2. 360	97	351	547	98	4. 3	4. 5	13. 33	5. 17	8. 16
	5	-10.4	2, 845	2, 463	96	330	522	93	3. 9	4. 3	13. 57	5. 84	7. 73
_	5	-10, 3	3, 001	2, 352	95	326	535	95	4. 1	3. 5	12. 84	5. 20	7. 64

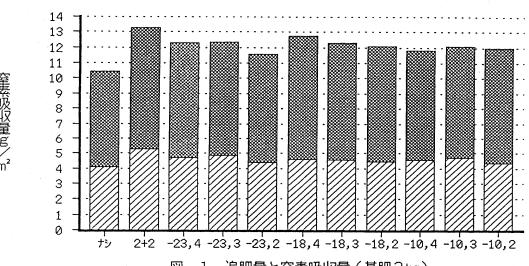


図-1 追肥量と窒素吸収量(基肥3kg) 図 わら **圏** 穂