酒米「五百万石」の安定栽培法と心白の発現条件

1. 試験のねらい

県内酒造メーカーの需要の高い酒造好適米「五百万石」の安定多収栽培の確立及びその肥培管理 と心白発現など酒米としての品質との関係について検討した。

2. 試験方法

(1) 試験場所 栃木農試水田 (厚層多腐植質多湿黒ボク土)

(2) 供試品種 五百万石 美山錦 (平成6年のみ)

(3) 試験内容

1) 移植時期 5月10日、20日、30日、6月10日、20日 (平成6年)

2) 基肥窒素 2、4、6 kg/10a (平成7年、8年は2、4 kg/10aのみ)

3) 栽植密度 18.5株/m²、22.2株/m² (平成7年)

4) 穂肥時期 出穂前13、10、5日 (平成8年)

5) 穂肥窒素 2、3、4 kg/10a (同上)

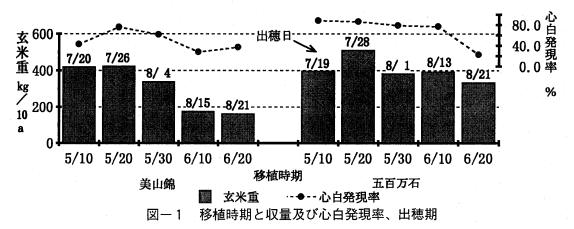
(4) 耕種概要

平成 6 年 基肥窒素は 4 kg/10 a、栽植密度は 22.2株/m^2 、出穂前15日に窒素 4 kg/10 a を追肥。 平成 7 年 5 月17日移植、出穂前13日に窒素 4 kg/10 a を追肥。

平成8年 5月21日移植、栽植密度は22.2株/m²。

各年次とも、追肥肥料には緩効性肥料 LP40日タイプを50%含有した追肥専用の肥料を施用。

3. 試験結果及び考察


- (1) 「五百万石」と「美山錦」では、「五百万石」の方が玄米千粒重が大きく、収量、心白発現率も安定していた。
- (2) 移植時期が早いほど心白発現率は高いが、出穂期がかなり早まるため鳥害を受けやすく、また 障害型冷害の危険性が高くなるため収量は不安定になる。これらのことから移植適期は5月下旬で、7月の末~8月初めに出穂させる。
- (3) 玄米千粒重が26 g 未満になると心白発現率が低下し、玄米粗蛋白含量は高くなる。酒米としての品質安定の面で玄米千粒重は26 g 以上必要である。玄米千粒重は総籾数との相関が高く、総籾数は26,000粒/㎡前後、玄米重580~600kg/10a、倒伏程度2.0以下が適正生育量と判断される。
- (4) 基肥窒素 6 kg/10a では倒伏が多く低収で、同 4 kg では収量性は高いが、総籾数がやや過剰で 心白発現率等の品質面が不安定であるから、基肥窒素は 2 ~ 3 kg程度とする。
- (5) 収量及び品質に対する栽植密度の影響は少ないが、疎植にすると稈長が伸びやすく、倒伏増加が懸念されるため、栽植密度は22.2株/m²程度とする。
- (6) 出穂前13日前の穂肥は収量確保には有利であるが、安定して高い心白発現率を確保するため、 穂肥時期は出穂前10日頃、穂肥窒素は 4 kg / 10a 程度(緩効性肥料 LP40日タイプを50%含有) を施用する。

4. 成果の要約

酒米「五百万石」は、収量、品質面から5月下旬に移植し、7月末~8月初めに出穂させるのが適していた。適正生育量は総籾数26,000粒/㎡前後、玄米千粒重26g以上を確保するようにする。

そのためには基肥窒素 $2 \sim 3 \text{ kg}/10 \text{a}$ 、栽植密度は22.2株/㎡程度、穂肥は出穂前10日頃に窒素 4 kg/10 a (緩効性肥料 LP40日タイプを50%含有)を施用する。

(担当者 作物部 松永純子・福島敏和・山口正篤・薄井雅夫・星 一好*)*現 酪農試験場

表一1 処理内容と収量、心白発現率及び品質

年次	処 理 内 容	稈長 cm	穂数 本/m²	一穂 籾数	総 籾数 ·00粒/m²	登熟 歩合%	千粒 重g	玄米重 kg/10a	倒伏 程度	心白発 現率%	品質 1~9	等級
平 成 7 年	基肥窒素 2 kg/10a 4 6	88.9 95.0 96.5	253 296 316	93.6 96.4 92.7	237 285 293	85.7 78.7 71.0	26.6 25.9 25.5	539 582 530	2.0 2.7 3.3	86.8 86.0 80.3	2.0 2.5 2.5	特等 1上 1下
	栽植密度22.2株/㎡ 18.5	92.6 94.4	294 283	92.4 96.1	271 272	78.9 78.1	25.9 26.0	551 550	2.7 2.7	83.9 84.8	2.3	1上
平成8年	基肥窒素 2 kg/10a 4	90.7 95.3	306 340	83.1 85.9	254 292	87.4 83.8	26.2 25.8	579 631	1.6 2.4	63.7 63.1	3.0 3.0	1上 1中
	穂肥時期 出穂前13日 3 kg 10 5	92.0 90.2 88.9	311 298 304	88.0 81.8 77.4	274 244 236	81.9 89.3 92.2	26.1 26.1 26.2	584 570 569	1.9 1.5 1.4	55.5 63.4 63.7	3.0 3.0 3.0	1 中 1 中 1 中
	穂肥窒素 2 kg/10a −10 3 4	90.8 90.2 91.9	307 298 308	80.8 81.8 86.5	248 244 266	85.9 89.3 84.6	26.1 26.1 26.3	555 570 592	1.6 1.5 1.7	62.8 63.4 68.2	3.0 3.0 3.0	1上 1中 1中

注) 登熟歩合は全粒数中の粒厚2.0mm以上の割合。千粒重は粒厚2.0mm以上対照。品質、等級は食糧事務所検査による。穂肥時期・穂肥窒素は基肥窒素 2 kg/10a 区のデータ。穂肥時期の下の数字は穂肥窒素量(/10a)。穂肥窒素の下の数字は穂肥時期(出穂期差)。

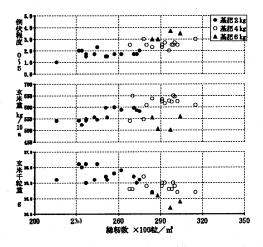


図-2 総籾数と倒伏程度及び玄米重、千粒重

図一3 玄米千粒重と心白発現率及び玄米粗蛋白含量